一橋大学 ソーシャル・データサイエンス学部・研究科 ロゴ

一橋大学 ソーシャル・データサイエンス学部・研究科

FACULTY

教員紹介

加藤 諒画像
加藤 諒 RYO KATO
ソーシャル・データサイエンス研究科 准教授
専門分野
マーケティング・サイエンス
ベイズ統計
欠測データ解析
INTERVIEW

インタビュー

ソーシャル・データサイエンス学部・研究科の魅力
データサイエンスに関する知識だけではなく、社会科学の知識を得ることができるのが、はやり本学部・研究化の魅力であると感じます。私も実際のビジネスの場面でのデータ解析のお手伝いをさせていただくことがありますが、どのような案件でも統計学やデータ解析の知識だけでは、現場で生かされるデータサイエンスを行うことは困難である、と頻繁に思います。これは後述の内容とも関連しますが、現場のデータを解析し、マネジメントに対してより説得的な説明を行うためには、統計科学の知識だけではなく、マーケティングやビジネスの知識に加えて、伝統的経済学、行動経済学・心理学などの複合的な知識が有用であるように思います。
本学部・研究科では、これらの幅広い知識を多くの教授陣の講義で得るとともに、PBL演習等で実践的に応用する機会があることが、非常に魅力的であると思います。
ソーシャル・データサイエンス学部・研究科で進めたい教育・研究
学部2~3年時の「マーケティングとデータサイエンス」では、マーケティングで扱われる基礎的な理論や、一部ソフトウェアを用いた統計的な方法の習得を目的とし、講義を行います。学部3~4年時の「マーケティングサイエンス」ではより高度な統計モデルの学習を行い、パッケージやソフトウェアと、(疑似)データを用いたデータ解析の実践的な演習を行うことで、現場のマーケティング・データの解析を行える人材を養成したいと考えています。
大学院の「ベイズ統計学によるマーケティング分析」では、より柔軟に消費者の行動を表現可能なベイズモデリングの観点から、統計モデルの開発や応用に関する講義を行います。ここでは、ベイズ統計による消費者行動のモデリングをより深く理解するために、パッケージを用いたデータ解析だけではなく、R等のソフトウェアを使ってスクラッチでデータの発生を行ったり、母数の推定を行うことに重点を置きます。これらの講義で得られた知識を基に、大学院生の自立的な研究活動を支援していきたいと考えています。
MESSAGE
加藤 諒画像
MESSAGE
学生へのメッセージ
マーケティングやビジネス課題の解決のために、既存のデータを解析し、或いは新たにデータ取得の枠組みを設計し、取得・解析を行える人材は非常にニーズがあり、教育を行う研究者として、このような人材の育成は大きな使命であると感じています。
一方で、これらの一通りの解析を行えるスキルだけでは、今後は不十分であるとも同時に考えています。つまり、人工知能などの技術の台頭で、定型的な業務に加えて、付加価値を創出できる人材になることが重要であると思います。例えば、より現場で生きるデータ解析や、その結果の説得的な解釈を行うためには、マーケティングに限らないビジネスやマネジメントの知識が必要です。また新たな施策提案の場面では、出来合いのデータの解析では対応できることが限られるため、(行動)経済学、心理学、法学などの知識が有用になります。本学部・研究科で、広い分野のデータへのアプローチ方法を学び、これらを融合した知識を生かせる人材になってほしいと思います。
CLASS

担当授業科目

  • マーケティングとデータサイエンス
  • マーケティングサイエンス
  • PBL演習D
  • (院)ベイズ統計学によるマーケティング分析
RESEARCH

研究内容

大きく分けて3つの分野の研究を行っています。
1つ目は、マーケティングサイエンスに関する研究です。ここでは位置情報データや購買履歴データ、店内回遊データ、調査データなどの様々のデータを組み合わせ、これらに対して柔軟に統計モデルを開発・応用することで、消費者の行動を深く理解するための研究を行っています。
2つ目は、欠測データ解析や因果推論に関する研究で、主にベイズ統計学の枠組みで研究を行っています。マーケティングをはじめとする社会科学では、様々な種類のデータを用いる必要が生じたり、回答者の事情等でデータの欠測等が生じますが、セミパラメトリックベイズモデルを用いることで、広く社会科学の問題に対処可能な統計モデルの開発を行っています。
3つ目は、実証会計学に関する研究で、財務諸表と統計モデルを用いた監査の質に関する研究や、調査データを用いた会計士業務のAI代替可能性の評価に関する研究などを行っています。
キーワード
  • マーケティングサイエンス
  • ベイズ統計学
  • 欠測データ解析
  • 因果推論
  • セミパラメトリックベイズモデル
  • 実証会計学
TOP FACULTY 加藤 諒